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Abstract—Safety analysis is a common and important task for
any operational planning of missions such as, in a maritime
context, the construction and maintenance of offshore wind farms.
Identifying potential risks that might occur during the planned
operation or a sequence of operations is the main task of an
associated hazard and risk analysis. This paper introduces an
approach to automatically adapt fault trees based on a simulation
of a model of the operation in question enhanced by a formal
description of hazards. Formalizing the corresponding hazard
specifications allows us to generate observers which in turn iden-
tify failures and hazards during a simulation of the system. Such
detection of critical situation can interact with the simulation via
a specialized controller application for the simulation thereby
triggering the completion of an existing fault tree. As potentially
stochastic models of the environment are considered as well, this
simulation approach naturally provides guarantees of the result
in terms of statistical confidence statements. The feasibility of
this approach is exemplified on an offshore lifting operation.

Keywords–Simulation; Statistical Model Checking; Fault Trees;
Risk Assessment; Offshore Operations; Observer.

I. INTRODUCTION

Identifying and mitigating potential hazards is an important
yet demanding task in nearly every system design process. The
likelihood of missing a potential risk depends critically on the
degree of complexity of the operation to be planned. Therefore,
having means of checking the completeness of an initial risk
picture is highly desirable. Current safety regulations, e.g.,
within the domain of offshore operations, require a description
of all involved risks [1][2]. Specifically, these regulations
require an in-depth characterization of risks, including listing
causal factors as well as options for mitigation of high-level
undesired events [3]. A common way to visualize and construct
such characterizations of the involved risks are fault trees [4].
Fault trees split the risk of violating an overall safety goal, e.g.,
physical inviolability of all personnel, into different failures
which in its combination might lead to the undesired event.
Although fault trees are easy to interpret and can be used
to calculate the probabilistic rate of the undesired event, they
are usually created manually and therefore prone to oversight.
On the other hand, simulations are widely used to optimize
complex operations, as they often can give a more accurate
estimate of incurred costs of an operation [5]. Supplementary
to the manual process of creating risk descriptions in terms
of fault trees, we propose a simulation-based risk analysis
which can be used to complete a given fault tree by iteratively
adding failure-combinations which have been detected by the
simulation to be able to trigger a violation of the overall
safety goal. Importantly, this approach comes with a statistical

statement which specifies the level of confidence that no further
critical failure combinations exist. In particular, this includes
a confidence statement about the probability of the occurrence
of each top-level hazard being below a critical value. On the
implementation side, we develop an integrated framework of
high-level process planning, a platform for handling different
co-simulations for different components of operations, and a
tool to formalize the manually identified hazards and failure
combinations to be able to detect them during simulation. We
demonstrate the potential benefits of such a framework on a
hazard and risk analysis problem for a specific offshore crane
operation of moving a cargo on a vessel observed by a lift
supervisor.

The paper is organized as follows. In Section II, we ex-
plain each component of the developed simulation framework
including the used models, the generation of observers as
well as the configuration of the simulation to be suitable
for a statistical evaluation of the obtained simulation runs.
To illustrate the framework, we present the evaluation of the
framework on the considered use case in Section III before
concluding in Section IV.

II. METHODOLOGY

Using simulation to identify additional failure combina-
tions that lead to a hazard requires an accurate description of
the operation to be performed and analyzed. This also means
that potential risks have to be encoded into such model used
for simulation – at least implicitly. Planning operations on
a detailed level consists of planning many sub-tasks. As a
result, undesired high level situations, such as personnel injury,
might depend on complex circumstances which are not easily
identified. We illustrate the proposed process for modeling,
definition of risks, and integration with the simulation in
Figure 1 which we will first describe on a high level before
explaining the individual steps in more detail.

As a first step, the model for the operation to be performed
has to be synthesized, as indicated in Figure 1 by “System
Model”. Each of the defined sub-tasks can be annotated with
potential failure combinations leading to hazards from which a
“Fault Tree Model” can be synthesized. In parallel, the planned
operation (and sub-tasks) can be refined iteratively, resulting
in a “Scenario Description Model” which can be simulated.
By using a suitable formalization of individual failures within
the fault tree, observers can be generated. They are able to
observe a simulation, indicating if an individual failure, hazard,
or a combination thereof has occurred in a single simulation
run. To this end, the “Observer” has to be triggered by a
central “Simulation and Control” part. If an observer indicates
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failures that are currently not considered within the fault tree, a
combination of them can be used to adapt the current fault tree,
resulting in a more complete risk characterization. Otherwise,
we can generate more simulation runs, until sufficiently many
traces of the operation to be planned have been simulated
without observing any non-considered failure combination.

Figure 1. Schematic overview of the simulation-based analysis and adaption
approach.

A. System Model
As a basis for our approach, we require a model of the

system to be analyzed. We use a process model (cf. Droste
et al. [6]) based on concepts from business process modeling
languages such as BPMN [7] or the activity diagram of UML
[8]. The respective process represent actors, tasks, and cor-
responding interactions. This model type has been developed
for application in the maritime domain, more specifically for
use for offshore operations. An exemplary model is described
in Section III. The graphical elements of the model depict
the task sequences and interactions and it is also possible to
annotate corresponding hazards and failures to the model. A
hazard describes a potential source of risks on a system-wide
level, i.e., the injury or death of a person, the pollution of the
environment, or the damage of systems. A failure describes
a possible cause for a hazard or another, higher-level failure.
In the proposed methodology, we use a formal specification
for hazards and failures as described by Läsche et al. [9].
Additionally to the process model, the system model consists
of an environment model which describes the considered
resources like actors, physical objects, or environmental condi-
tions. These resources are also accessible by the process model
to map actors to specific avatars of the simulated environment.
For example, a crane operator is mapped to a crane operator
resource from the simulated environment with an orientation,
a location, a mass, and further necessary attributes.

B. Scenario Description Model
In our case, a scenario description can be used to describe

the course of a simulation. In our current approach it consists
of
• Parameter bounds,
• Parameter exploration techniques,
• Exit conditions, and
• Different trigger types (i.e., simulation-time and

simulation-step) to cause parameter changes or to
define the end of a simulation (run).

Using the presented system model which describes the
progress of an operation and the considered resources – like
the ship, a crane, and a lift supervisor – and their properties,
a scenario description template with default values can be
automatically generated. The generation process reads the
resources and their properties from the environment model as
well as the modeled events and annotated failures and hazards
from the process model. Based on this information the scenario
description model is build. The build process categorizes the
resources from the environment model and automatically sets
a default trigger for each property. The default trigger is
used to set the value of a property to the value defined in
the environment model at the start of a simulation run. The
scenario description is completed by event triggers which are
extracted from the process model and are available to the
modeler of a scenario.

After this automatic generation of the scenario description
it can be adjusted. The adjustment allows to configure the pa-
rameter bounds of the resource properties like a minimum and
maximum wave height, the parameter exploration techniques
like a linear or random exploration and the configuration of
the parameter change trigger and exit conditions which are
used to define the end of a simulation or simulation run. The
triggers can be based e.g., on the simulation time but also on
the occurrence of situations such as the start of a task. These
situations are defined in the process model. The completed
scenario description can then be forwarded to the simulation
control to configure the simulation runs (cf. Section II-E2).

C. Fault Tree Model

As part of risk assessment for offshore applications, Fault
Tree Analysis (FTA) gains more and more attention in the mar-
itime domain (cf. Vinnem [10], Lavasani et al. [11], and Sutton
[12]). Thus, FTA has been recommended as methodology in
several guidelines for risk assessment. However, fault trees are
typically constructed manually. It requires experienced engi-
neers to structure the system knowledge and necessary details.
Manual construction of fault trees thus is time-consuming,
cost-intensive, incomplete, and error-prone (cf. McKelvin et al.
[13] and Tajarrod et al. [14]). Therefore, several approaches to
automatically synthesize fault trees are published (cf. Chen
[15] and Pai et al. [16]). These approaches, focusing on
the construction of fault trees, typically use formal system
models. If both, the underlying model and the individual fault
tree elements, such as failures and hazards, are formalized,
a formal completeness analysis can be performed via model
checking (cf. Schellhorn et al. [17] and Ortmeier et al. [18]
for more details on such a formal completeness analysis). By
verifying these completeness conditions over the formalized
fault tree via model checking, it is possible to guarantee that
no additional failure as a cause for the specified system hazard
has been missed within a given fault tree. However, this kind of
completeness analysis typically does not scale well with the
system’s complexity. Furthermore, some parts of the system
might only be given as a black box model for which no formal
description is available but which can be simulated to generate
traces describing its behavior. Thus, we focus on a simulation-
based methodology to check fault trees completeness and
provide a confidence statement about the statistical certainty
of the existence of unconsidered failures. Thereby, the fault
trees are automatically synthesized from the process model
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part of the system model. Process model elements such as
tasks or actors have annotated hazards and failures. For each
annotated hazard, we create a fault tree to logically structure
the respective failures that could possibly cause the hazard.
Since each hazard relates to an element of the process model,
i.e., a task, the respective fault tree is also related to this task.
Conversely, each top event of a fault tree corresponds to one
hazard. For example, a task can have several fault trees that
graphically represent its hazards and corresponding failures. In
contrast to other fault tree construction approaches mentioned
above all necessary information are included in the process
model. The process model elements, such as a task or an
actor have specific hazards and failures that are modeled by
an experienced safety expert.

D. Observer
To be able to identify the occurrence of the hazards

and failures depicted in the fault tree during run-time, we
need a formalized description of them. Their identification is
important as we want to check the fault trees for errors and
completeness. Specifically, we can use the identified events to
evaluate each simulation step regarding whether a top event
has occurred. If this is the case, it is checked against the fault
tree if there is a mismatch between failures identified by the
observer and the failures in the fault tree. If a failure in the
fault tree is not detected, the failure might not be required
for the event to happen. Thus, the fault tree structure might
be faulty and has to be reassessed. On the other hand it is
checked if failures occur that are not covered in the current
fault tree structure identified for the top event. If this is the
case, we have to add the detected failure to the fault tree of
the top event in order to complete the fault tree structure. As
this process is repeated, a more and more accurate fault tree
is created and failures required for the hazard to occur are
highlighted whereas optional failures are identified and can be
corrected. This allows us to have a most accurate estimation
(to a certain confidence level) of the involved risks (to the
limits of the simulation).

In order to identify hazards and failures during the sim-
ulation, we attach observers, i.e., programs to detect the
occurrence of events, to the simulation environment. To be
able to create such observers, a formal description of the events
has to exist. This is achieved through the Hazard Description
Language (HDL) which has been developed by us for this
exact purpose. The language allows the analyzing person to
formalize hazard and failures in near-natural language, allow-
ing persons without knowledge about formalization languages
to describe the events. It is used to describe the events that
display a hazard or failure to be able to detect them. There is
a set of potential formalization patterns, allowing the person to
describe several aspects of an event to make it unambiguous.
However, we do not directly use the HDL formalization and
thus transform it into the Object Constraint Language (OCL)
[19]. Thus, the HDL can be seen as an interface for describing
hazards and failures using OCL without deeper knowledge of
the constraint language by defining a set of HDL patterns that
are automatically transferable to OCL expressions. OCL is a
widely used language; thus, its usage minimizes our effort
as we can rely on a well-evaluated language and multiple
implementations.

Every OCL expression is evaluated by a separate observer

client that is constantly updated with data from the simulation
by the controller (cf. Section II-E1). At each simulation step,
all observers are triggered by the controller to automatically
evaluate if an event has occurred. If this is the case, the event
then is logged for further analysis. The simulation result is
analyzed and incorporated as described above. In contrast to
the automatic observation of the simulation, this is a manual
process.

E. Simulation-based Analysis
Our goal is to determine the completeness of a fault

tree with possible failure combinations leading to an overall
hazardous event. To this end, we need to ensure that the cut-
sets of the fault tree is minimal or that there are no other failure
combinations which are able to trigger an overall hazardous
event. As we are following a simulation-based approach, such
a guarantee can only be of statistical nature. Therefore, before
detailing the simulation setup, we present the theoretical foun-
dation of determining the necessary number of simulation runs
needed for gathering sufficient evidence of the completeness
of the current risk description of the corresponding fault tree.

1) Statistical Evaluation of Simulations: Based on multiple
runs of the simulation, it is of critical importance to quantify
the confidence in the found failure and hazard combinations.
In particular, when no more failure combinations leading to
a hazardous situation are found using simulation runs, we are
aiming at bounding the probability that there are indeed no
more critical failure combinations possible. As we allow the
underlying model to exhibit stochastic behavior, we cannot be
absolutely certain that there are no more failure combinations
based on finitely many simulations. However, we can bound
the probability that a hazard is caused by a previously not
considered failure or combination. To this end, we are using
a well-known confidence statement. More precisely, if we
assume that we will observe a failure combination with prob-
ability p, the probability of not observing a critical situation
within N samples is given by

P (no failures observed) = (1− p)N (1)

This equation can be used to construct a confidence state-
ment of the following form. Once we have observed N without
any observable critical situation, the following holds true (see
Annex D in part 7 of [20]):

Up to a confidence 1−α, the probability of the occurrence
of a critical situation can be bound by 1− N

√
α.

Vice versa, we can also bound the necessary number of
simulations needed to be sure – up to a confidence level of
1−α – that there is no critical situation having an occurrence
probability larger than p+ by :

N ≥ − log(α)

p+
(2)

By using this confidence statement, we are compliant with
the IEC61508 [20]. Note that p+ is used here to bound the
compound probability of the failure combination. That is, using
N simulations we can statistically show, that there are no
failure combinations which have a probability of occurring
together larger than p+. Taken together we have the following
procedure to perform a statistical completeness check:

230Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation



Figure 2. The structure of our distributed simulation setup. It consists of a simulation coordination component, federates (e.g., simulators), observer, and
DistriCT to control and monitor the mentioned components.

1) Fix desired confidence level α and critical threshold
for the probability p, for example δ = 0.05 and p =
10−8

2) Calculate number of simulation runs N
3) Generate N number of simulations
4) If all simulations do not reveal a previously not

considered failure combination, we have reached the
desired level of certainty of no additional failure
combinations

5) If additional risks have been identified, return to 1.

Note, however, that the necessary number of simulations
does not scale well with low thresholds for critical probabilities
p (cf. equation (2)). In particular, the necessary number of
simulation runs scales linearly with the critical threshold.
For example, if we chose the critical probability threshold
to be p+ < 10−9, roughly 109 simulation runs are needed.
To be able to obtain feasible confidence statement in these
kind of situations, specialized, guided simulation methods such
as importance splitting or sampling [21][22][23] are needed.
However, for the sake of simplicity, we use the procedure
presented above. Having a formalization of the hazardous
situations could also help to define a score function thereby
defining a notion of proximity to a critical situation. This score
function, for example could then in turn be used to guide
the simulation toward the rare event (see [24]). These kind
of simulations also require that the individual simulations can
be controlled on an individual time step basis, which we will
explain in the next section.

2) Simulation and Simulation Control: To be able to find
overlooked failures based on simulation, we use a simulation
setup and simulation control tool. Therefore the scenario
description can be used together with a description of the
required simulators to generate a simulation plan. The simula-
tion plan itself describes a configured sequence of simulation
runs and also accesses the simulation environment depicted in
Figure 2. The proposed structure, also used in our use case
(see Section III), consists of four distinguishable component
types which are explained in this section, namely:

1) Simulation Coordination Component (SCC)
2) Federates
3) Observer
4) Distributed Controlling Toolkit (DistriCT)

The central component of the simulation is the Simulation
Coordination Component (SCC) which manages the commu-
nication between the simulators and the time synchronization
among them. All simulators or services, called Federates,
register to the SCC. They specify which objects they want to
be able to update and for which they want to receive updates.
To support this, a common definition of all object classes and
interactions exists called Object Model Template (OMT) [25].

Federates can be described as simulators or services con-
nected to the SCC which have the possibility to publish data to
and subscribe data from other Federates. In our considered use
case two simulators exist. One of them is the Lift Supervisor
Simulator, responsible for moving the lift supervisor on the
ship deck. It uses observation paths which guarantee a free
view to the cargo and the crane operator. The simulated lift
supervisor chooses which path he takes on given probabilistic
value. The other one is the Physical World Simulator (PWS),
which in our example controls the environment or the crane
movement. The PWS is used to provide a 3D model of the
scenario and of the physical and environmental conditions.
Physical effects are, for example, the collision of objects or
soft body effects which are used to simulate the swinging
of the crane rope. Environmental conditions are, in our case,
particle effects like rain or snow. This simulator is based on
the GameKit [26] game engine which contains Ogre [27] as
visualization and Bullet [28] as physics engine. The PWS has
an integrated visualization which is handy for testing purposes,
manual observations, or to demonstrate the simulation. But the
PWS can also be executed without graphical output to achieve
a simulation speed up. More detailed descriptions of the PWS
and its components can be found in Schweigert et al. [29] or
Läsche et al. [25].

The Distributed Controlling Toolkit (DistriCT) consists of
the following different program parts. Jigger is used to set
up the simulation components on a software level. The Jigger
component is divided into a client and a server part, the clients
can be started on different computer systems and are available
for the server. The server deploys the components, e.g., the
simulators, to the clients and offers the ability to start, stop, and
configure them. The Mediator is used to read all communicated
changes via the SCC and sends data from DistriCT to the
connected simulators. It allows us to listen and react to the
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Figure 3. Example of a simulation plan describing the course of simulation runs for a specific simulation scenario.

Observer when hazards or other events occur as well as instruct
the other simulation participants, i.e., to reset them or to shut
them down. The simulation run configuration can be described
by a Simulation Plan which is a graph-based representation
of the simulation course and can be created from a scenario
description. In a simulation plan predefined nodes, like a setup
node to initialize the SCC and the connected simulators, can
be added. By connecting these nodes, the order of execution
as well as sending necessary data from one node to another
can be specified in the simulation plan. An example of a
simulation plan can be found in Figure 3. In this figure, also
representing our later in Section III presented use case, the
SCC, the LiftSupervisor-Simulator and the PWS are created
at first on a configured system; all necessary data like the
mentioned OMTs is transmitted and the components are started
in the right order. After that, the Mediator connects and sends
the start signal to all Federates (cf. Figure 3:1). While the
simulation is performed, DistriCT listens for the occurrence of
hazards and the simulation time (cf. Figure 3:2). The Logger
component writes the information about occurring failures and
hazards to a file and also informs a counter (cf. Figure 3:3)
if a hazard has occurred or a given maximum simulation time
ran out. If a maximum number of non-hazard runs in a row
was counted, the simulation is stopped (cf. Figure 3:5). The
counter is set back to zero hazard-less runs if it is informed
about another occurrence of a hazard. On the other hand, the
simulation is reset and started again while the maximum count
is not reached (cf. Figure 3:4).

The last component introduced is DistriCTGear which is
the central element for the other DistriCT components and
allows the execution of the simulation plan and its included
commands and scripts.

The introduced Observers (cf. Section II-D) are connected
to the Logger component from DistriCT. They evaluate the
incoming logger data for the occurrence of predefined hazards
and inform connected components like DistriCT about it.
Note that the Logger can also be connected to monitor-like
components (Risk Monitor) which allows us to estimate a
distance to a hazardous situation by a semi-automatic created
heuristic and use this to trigger the saving of simulation states
and running new simulations beginning at the saved state.

III. USE CASE – LOADING OPERATION

In order to illustrate our simulation-based risk assessment,
we have chosen a maritime loading operation on a jack up
vessel – a special ship for offshore operations, cf. Figure 4
b). A crane operator (Figure 4 b:triangle) has to lift a cargo
(Figure 4 b:rectangle) with new materials and transport it to a
wind turbine platform (Figure 4 b:hexagon). While there are
many factors, like a bad sight or communication problems, fail-
ures might occur, leading to fatal accidents. Because of these
problems during the loading operation, a person is needed
to supervise the loading (Figure 4 b:circle) and point out
problems to the crane operator. Therefore, the lift supervisor
follows the lifted cargo to always keep it, as well as the crane
operator, in his field of view (cf. Figure 4 b).

a) System Model: The described system model consists
of a process model depicted in Figure 4 a and an environment
model. The process model structures the use case scenario and
thus tasks of the involved actors in a BPMN-like graphical
representation. The use case has been adapted from literature
(cf. Droste et al. [6]). It has been reduced by some preparing
measures such as load preparation or hook positioning. Thus,
the scenario starts with the beginning of the actual lifting
operation. The crane operator signals the intended lifting
of the cargo to the lift supervisor (Figure 4 a:1). The lift
supervisor leaves the safety critical zone around the cargo to be
lifted. Meanwhile, the crane operator raises the hook. The lift
supervisor signalizes the approval of the operation (Figure 4
a:2). When the crane operator received the OK (Figure 4 a:3),
the cargo then is lifted, moved to the wind turbine platform,
and positioned at the target. During the operation, the lift
supervisor continuously informs the crane operator about the
current status from his point of view (Figure 4 a:4), whereas
the crane operator steers the crane accordingly. Hence, the lift
supervisor requires clear sight on the cargo, the crane operator,
and potential obstacles. The scenario ends with successfully
placing the cargo on the wind turbine platform. The environ-
ment model from our use case describes the following actors
and physical objects and their properties. The physical objects
consist of the jack up vessel, the crane on the ship and the
transported cargo. The actors comprise the crane operator and
the lift supervisor. The physical objects as well as the actors
have a start pose (position and orientation) and a mass.
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Figure 4. a) Process model of the use case including the involved actors crane operator and lift supervisor and their corresponding tasks. b) Overview of the
simulation scenario from different vantage points. The lift supervisor is marked by a circle, the loading by a rectangle, the crane cockpit by a triangle, and the

wind turbine platform by a hexagon.

b) Scenario Description Model: Using this system
model a scenario description template is created. The jack
up vessel, the crane, the transported cargo, as well as the lift
supervisor and the crane operator are converted into scenario
configuration elements and automatically completed by a start
trigger which means that the standard property values from
the environment model like the position are set at the start
of a simulation run. The scenario description is then adjusted
to define the simulation and simulation run ends. Therefore
three exit conditions are added for the simulation end and
for the simulation run ends. The simulation end is defined
by a trigger listening to the current simulation run count and
comparing it with a given maximum count of simulation runs.
The simulation run end is defined by two triggers. The first one
is a time trigger which sets the maximum simulation time to
30 seconds, the other one is an event trigger which stops the
simulation run if the observer monitors a collision between
the lift supervisor and the lifted cargo. From this scenario
description, the simulation plan is generated (cf. Figure 3),
then completed by the setup, shutdown, and reset scripts and
executed by the DistriCT component.

c) Fault Tree Model: For the introduced operation, we
annotated the potential hazard “lift supervisor collides with
cargo” and corresponding failures, causing the hazard. These
elements are depicted in the synthesized fault tree shown in
Figure 6 a. The hazard occurs if a person is located below the
cargo while it is dropping. Dropping of cargo can have several
causes, for example it falls uncontrolled or it is intentionally
dropped by the crane operator. Normally, in cases of imminent
collisions the crane operator should initiate an emergency stop.
If it is not initiated while the cargo is dropping, this could
have several causes, e.g., technical defects which could be used
to decompose one failure to more sub-failures. The fault tree
depicted in Figure 6 a) represents the possible causes for a
collision of the cargo with the lift supervisor. However, in the

example of these failures the developer of the fault tree cannot
know if there are other potential failures causing the hazard.

Figure 5. Collision case from load collision simulation run. Big pictures:
Different views on the loading area short before the accident(1-3) and while

the load collision hazard occurs(4). Small pictures: View from the crane
cockpit taken at the same time as the corresponding big picture.

d) Observer: In beforehand to the first simulation run
of the use case, a hazard was identified by the domain expert:
A collision between cargo and lift supervisor (see top event in
Figure 6 a). To avoid this situation, the domain expert analyzed
the situation and identified as failure leading to that hazard
that the lift supervisor is positioned below the cargo. Both
situations have been formalized by the expert using HDL.
The hazard “lift supervisor collides with cargo” has been
described as “distance between LiftSupervisor and Cargo equals
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0cm,” i.e., the bounding boxes of the two objects overlaps.
The failure “lift supervisor below cargo” has been written as
“position.x of LiftSupervisor equals position.x of Cargo and position.y
of LiftSupervisor equals position.y of Cargo and position.z of Cargo
is more than height of LiftSupervisor,” i.e., the position of the lift
supervisor is a position below the cargo. These expressions
are translated to OCL expressions during the generation of the
observer. They are evaluated during execution of the simulation
to indicate the occurrence of the described events.

All events that occur during each simulation run are logged.
This allows the domain expert to check if the previously iden-
tified hazard occurred after the previously defined dependent
failures have occurred. If this is not the case, a failure causing
the hazard might have been missed or the fault tree might
otherwise be faulty.

e) Simulation-based analysis: The 3D environment
(see Figure 4 and Figure 5) was modeled with Blender [30].
It consists of a jack up vessel, the transported cargo, an
uncompleted wind turbine, the lift supervisor and the crane
operator. We completed it by a functional crane consisting of
a rotatable crane base,a movable jib and a rope which can
react to different physical forces (e.g., the wind). The PWS
was used to load the 3D environment, handle the physical
effects and control the crane. The LiftSupervisor-Simulator
was used to move the lift supervisor in the 3d environment
on a chosen path. Like explained in Section II-E we used the
created scenario description to generate the used simulation
plan shown in Figure 3.

If an error in the fault tree has been detected while
observing the simulation, it has to be corrected. During the
execution of the simulation plan, an observer indicated a
collision between lift supervisor and cargo, although the lift
supervisor was not standing below the cargo, which had been
identified as a required failure.

At the beginning of the operation (cf. Figure 5:1), the
lift supervisor stands next to the cargo waiting for the lifting
operation to begin. While the lift supervisor reaches for his
next observation point, the crane operator begins to lift the
load. In the example case, the crane operator does not lift the
cargo high enough and begins the rotation of the crane base too
early (cf. Figure 5:2). Figure 5:3 shows the fatal development
of the situation not marked as critical. The cargo is too low and
moves towards the lift supervisor. The last picture, Figure 5:4,
shows the actual accident. The lift supervisor is hit by the
cargo. The difficulty for the crane operator to oversee the whole
situation can be seen in the four smaller pictures at the corners
of the big one, showing the bad sight out of the crane cockpit
during the operation.

Thus, the analysis results are failures leading to the hazard
that have not been considered in the synthesized fault tree, cf.
Figure 6 a). The analysis discovered that the hazard occurs
even if the lift supervisor is not located below the cargo (cf.
Figure 6 b:1). Additionally, the results show that the rotation
of the crane while cargo is raised also leads to the hazard
(cf. Figure 6 b:2). These results are used to manually adapt
the existing fault tree as depicted in (cf. Figure 6 b). Results
are therefor used by the user to construct events such as
intermediate or basic events in the fault tree as well as fault
tree gates in order to logically structure simulation results in
the fault tree logic. Thereby, the simulation results are already

Figure 6. Fault trees of the load collision scenario. a) Exemplary fault tree
before simulation analysis b) Adapted fault tree by simulation-analysis

results. 1: Adapted existing fault tree element 2: New failure combination
discovered by simulation

clustered as failure combinations which already propose a
logical structure of found failures based on the simulation runs.

Using this setup, we tested our framework by recording
the number of simulations needed to find the missing failure
which could lead to the overall hazard that the cargo hits the
lift supervisor. Empirically, averaging across 50 iterations, we
found that 6.43 simulations were needed to identify the missing
hazard. Such few number of simulations, however, will in
general not suffice in other situations in which the probability
of an overall hazardous event is much lower. In contrast, the
high probability here was chosen for demonstration purposes
and therefore does not require the use specialized simulation
methods to detect rare events.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a simulation-based ap-
proach to identify potentially missing failures of a given fault
tree that represents a critical scenario in the maritime domain.
Importantly, the presented method comes with a confidence
statement about the statistical certainty about the existence
of failures which have not been identified by the simulation.
To provide sufficient evidence for a complete characterization
of potential failures, a large number of simulation runs are
required. Although this is a well-known problem in statistical
model checking, setting up appropriate rare event simulations
remain subject to future research. However, these confidence
statements assume the correctness of the underlying model for
simulation. The check for failures should be seen as a means
for finding additional critical situations and therefore acts as a
completeness check of a previous risk analysis. Nevertheless,
having a simulation model at hand also allows for further
analysis methods, which unlike the presented method can also
access risks during an (offshore) operation by initializing the
simulation with the current status and specifically search for
potential risks in the near future conditional on the current
situation. Again, to bound the number of necessary simulation
runs and acquire sufficient information about the current level
of risk, techniques from rare event simulation can be used. In
particular, importance splitting (cf. Lagnoux [21]) can be used
to guide the simulation to potentially more risky situations.
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To this end, an artificial risk level has to be defined, which
heuristically estimates the risk level and guides the simula-
tion. Defining such heuristic and integrate a corresponding
importance sampling technique into the presented approach
will therefore be the focus of future research.
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